
N87-26549
IMPLEMENTATION OF THE BAROTROPIC VORTICITY EQUATION

ON THE M P P

Max a. Suarez

NASA/GSFC/&11

Greenbelt, Maryland 20771

and

Jim Abeles

Science Applications Research
4400 Forbes Blvd.

Lanham, Maryland 20706

ABSTRACT

A finite difference version of

the equations governing two-

dimensional, non-divergent flow

on a sphere is implemented and

integrated on the MPP. The MPP's

performance is then compared with
the CYBER's.

Keywords: Numerical weather

prediction, computational fluid

dynamics.

INTRODUCTION

The purpose of the work described

here was to demonstrate the feas-

ibility of using a massively par-

allel architecture to solve the

hydrodynamic equations as they

are used in numerical weather

prediction (NWP).

Models used in NWP are commonly

divided in two parts: the "dyna-

mics" and the "physics". The

dynamics performs the time inte-

gration of the equations of mot-

ion. The physics computes the

heating, friction, and sources

and sinks of water vapor. These

two parts present very different

problems to a highly parallel

machine.

Many of the calculations in the

dynamics involve the parallel

updating of the many degrees of
freedom allowed in the discreti-

zation and are thus very suitable

to a machine like the MPP.

Occasionally, however, it is

necessary to obtain a spectral

transform or solve an elliptic

equation. These problems, al-

though parallel, are non-local

and thus difficult to implement

efficiently on the MPP's nearest

neighbor network. Fortunately,

the non-local calculations can be

minimized by a suitable choice of

numerical scheme. For example,

grid-point models, in which the

equations are finite differenced

in a latitude-longitude lattice,

are much preferable to spectral

models, which require frequent

transformations between physical

end spectral space. Still, non-

r_EDiI_G PAGE BLA_K N_ E_L_,_ED

161

local calculations are not com-

pletely avoidable. In particular

they appear in the solution of

elliptic equations that occur

when implicit time differencing

schemes are used. Although these

too could be avoided by using an

explicit method (which is in fact

done in many models, even on

serial computers), we feel the

architecture should not be so

specialized as to completely for-

bid such choices.

Problems in the physics part of

the codes are probably even more

serious. In these, it is their

non-parallel, rather than non-

local, nature that makes for

difficulties. As an example con-

sider condensation. In most

models this is done level by

level, testing for super-satura-

tion and passing the excess water

to the next level below. That

level in turn may become super-

saturated, or may have been so

already. The condensation calcu-

lation is then repeated and so on
until "rainfall" reaches the sur-

face. If parallelism is

exploited by mapping each latitu-

de-longitude point onto a dif-

ferent processor (this is really

the only practical alternative in

a machine with as many processors

as the MPP), each one will in

general encounter different con-
densation conditions. Processors

at all grid points where there is

no condensation, for example,

will be idle in this segment of

the code, and parallelism will be

lost.

THIS STUDY

To start looking at the problems

one faces with a parallel archi-

tecture, we decided to use the

barotropic vorticity equation as

a model of the "dynamics" part of

NWP models. In this way we can

test both the parallel grid-point

162

updating segments and the more

challenging problem of solving an

elliptic equation.

At each step of the calculation

we update the following equation

for a new value of the vorticity:

(1)

_

where _ is the vorticity, and u

and v are the zonal and meridio-

nal velocity components of the

non-divergent flow, _ and _ are

the latitude and longitude, and f

is the Coriolis parameter. As

mentioned already, (1) is solved

by finite-differencing on a lati-

tude longitude grid. A leap-frog

differencing scheme is used in

time. Once a new value of the

vorticity is obtained from the

discrete version of (1), the

Poisson equation:

3

is solved for the stream-func-

tion. To solve (2) we use a

"fast" method in which the equa-

tions are first Fourier

transformed in the zonal direc-

tion, then finite differenced in

the meridional direction and sol-

ved as a set of tri-diagonal sys-

tems. The velocity components u

and v are then obtained from

Having u and v, (1) can be up-

dated again and the cycle com-

pleted.

To test the model, (1) was forced

with sources of angular momentum

and eddy vorticity, and damped by

a linear drag.

Tests were conducted in parallel

on the MPP and the CYBER 205 at

Goddard Space Flight Center. The

CYBER calculations were done with

HALF-PRECISION (32-bit) arithme-

tic. Both MPP and CYBER codes

were optimized for their machines

to the best of our abilities; but

both used exactly the same algo-

rithm. In particular, the "fast"

solver used for (2), which is

very efficient on the CYBER, was
retained on the MPP. On the

other hand, a 128x128 square grid
was used in both cases. This is

optimal for the MPP. Higher reso-

lution would require either doing

a prohibitive amount of I/O, or

keeping more than one grid-point

per processor, which is not pos-

sible with the MPP's limited mem-

ory. The CYBER efficiency,in

contrast, is independent of reso-

lution for all practical choices.

RESULTS

The timing results are shown in

Table I. We have separated these

in two parts: the time spent sol-

ving the Poisson equation (2),

and all the rest, which is mostly

computing the right-hand-side of

(1) and a little housekeeping.

Units are msec./timestep. At the

resolution used, we were taking

200 time steps per day. As may be

seen, the code is approximately

four times slower on the MPP than

on the CYBER. This poor perfor-

mance, however, is due entirely

to the Poisson solver, which runs

some ten times slower on the MPP.

The updating of the vorticity

equation is twice as fast on the

MPP. This is a very encouraging
resul t.

" CODE : MPP : CYBER "

" UPDATING "

" VORTICITY 5.7 11.6 "

" EQUATION "

" SOLVING

" PO ISSON 65.0 6.3 "

" EQUATION

II ll

" TOTAL 70.7 17.9 "
I, II

TABLE I

If the NWP model is grid-point

and uses explicit time differenc-

ing, the elliptic solver is not

needed, and the MPP (or an MPP-

like machine) should do very well

in the dynamics. However, even

if the model is implicit, and one

or several elliptic equations

have to be solved, the situation
is not as bad as Table I would

indicate. In a typical situation

we would be solving some 40 equa-

tions like (1) (4 variables

[u,v,T,q] at 10 levels), but at

most 10 equations like (2). Using

these figures, we can extrapolate

our results to a full, grid-

point, semi-implicit NWP model.

This is shown in Table II. As may

be seen, the situation is much

improved; the MPP is now at near

CYBER performance, even doing all

ten vertical modes implicitly.

163

Obviously, much work remains to

be done before massively parallel

machines can be used efficiently

for numerical weather prediction.

In particular, it is imperative

that much more parallel formula-

tions and/or algorithms be deve-

loped for the physics codes, a

problem we have not even begun to

address here. Nevertheless, we

feel that the results presented

indicate a very real possibility

of using MPP-like machines in

NWP.

" CODE : MPP : CYBER "
..... ll

" UPDATING

" VORT IC ITY 228 464 "

" EQUATION "

" SOLVING "

" POISSON 650 63 "

" EQUATION

___ii

II II

" TOTAL 878 527 "
II II

TABLE II

164

